Vector Representation of Text – Word Embeddings with word2vec

Computers can not understand the text. We need to convert text into numerical vectors before any kind of text analysis like text clustering or classification. The classical well known model is bag of words (BOW). With this model we have one dimension per each unique word in vocabulary. We represent the document as vector with … Read more

Sentiment Analysis of Twitter Data

Sentiment analysis of text (or opinion mining) allows us to extract opinion from user comments on the web. The applications of sentiment analysis can be such as understanding what customers think about product or product features, discovering user reaction on certain events. A basic task in sentiment analysis of text is classifying the polarity of … Read more

K Means Clustering Example with Word2Vec in Data Mining or Machine Learning

In this post you will find K means clustering example with word2vec in python code. Word2Vec is one of the popular methods in language modeling and feature learning techniques in natural language processing (NLP). This method is used to create word embeddings in machine learning whenever we need vector representation of data. For example in … Read more

Using Pretrained Word Embeddings in Machine Learning

In this post you will learn how to use pre-trained word embeddings in machine learning. Google provides News corpus (3 billion running words) word vector model (3 million 300-dimension English word vectors). Download file from this link word2vec-GoogleNews-vectors and save it in some local folder. Open it with zip program and extract the .bin file. … Read more