This is source code for Text Classification for Different Datasets CNN based on the code from
Text Classification, Part I – Convolutional Networks
# -*- coding: utf-8 -*- import csv import re from nltk.corpus import stopwords stopword_set = set(stopwords.words("english")) def preprocess(raw_text): # keep only words letters_only_text = re.sub("[^a-zA-Z]", " ", raw_text) # convert to lower case and split words = letters_only_text.lower().split() # remove stopwords meaningful_words = [w for w in words if w not in stopword_set] # join the cleaned words in a list cleaned_word_list = " ".join(meaningful_words) return cleaned_word_list def preprocess2(raw_text): stopword_set = set(stopwords.words("english")) return " ".join([i for i in re.sub(r'[^a-zA-Z\s]', "", raw_text).lower().split() if i not in stopword_set]) def get_index (key): if (dict.has_key(key)): return dict[key] else: dict_count=dict.values new_item = {key : dict_count } dict.update(new_item) return new_item # from https://pythonspot.com/reading-csv-files-in-python/ def readMyFile(filename): text = [] categories = [] dict = {} with open(filename, encoding='latin-1') as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: if (row[4] in dict): ind= dict[row[4]] else: dict_count=len(dict) new_item = {row[4] : dict_count } dict.update(new_item) ind=dict_count categories.append(ind) text.append(row[1] + " " + row[0] + " "+ row[6]) return categories, text fn="C:\\Users\\New-years-resolutions-DFE.csv" labels,new_texts = readMyFile(fn) print(new_texts[0]) print(new_texts[1]) print(labels[0]) print(labels[1]) print(labels) texts=[] for txt in new_texts: txt=preprocess2(txt) texts.append(txt) import numpy as np import os os.environ['KERAS_BACKEND']='tensorflow' from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils.np_utils import to_categorical from keras.layers import Dense, Input, Flatten from keras.layers import Conv1D, MaxPooling1D, Embedding, Merge, Dropout from keras.models import Model MAX_SEQUENCE_LENGTH = 1000 MAX_NB_WORDS = 20000 EMBEDDING_DIM = 100 VALIDATION_SPLIT = 0.2 tokenizer = Tokenizer(nb_words=MAX_NB_WORDS) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) labels = to_categorical(np.asarray(labels)) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0]) x_train = data[:-nb_validation_samples] y_train = labels[:-nb_validation_samples] x_val = data[-nb_validation_samples:] y_val = labels[-nb_validation_samples:] print('Number of positive and negative reviews in traing and validation set ') print (y_train.sum(axis=0)) print (y_val.sum(axis=0)) GLOVE_DIR = "C:\\Users\\pythonrunfiles" embeddings_index = {} f = open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt'), encoding="utf-8") for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() print('Total %s word vectors in Glove 6B 100d.' % len(embeddings_index)) embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM)) for word, i in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector embedding_layer = Embedding(len(word_index) + 1, EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, trainable=True) sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) l_cov1= Conv1D(128, 5, activation='relu')(embedded_sequences) l_pool1 = MaxPooling1D(5)(l_cov1) l_cov2 = Conv1D(128, 5, activation='relu')(l_pool1) l_pool2 = MaxPooling1D(5)(l_cov2) l_cov3 = Conv1D(128, 5, activation='relu')(l_pool2) l_pool3 = MaxPooling1D(35)(l_cov3) # global max pooling l_flat = Flatten()(l_pool3) l_dense = Dense(128, activation='relu')(l_flat) preds = Dense(11, activation='softmax')(l_dense) # was 2 instead 11 model = Model(sequence_input, preds) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) print("model fitting - simplified convolutional neural network") model.summary() print (x_train) print (y_train) model.fit(x_train, y_train, validation_data=(x_val, y_val), nb_epoch=1, batch_size=128) #epoch was 10 embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM)) for word, i in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector embedding_layer = Embedding(len(word_index) + 1, EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, trainable=True) # applying a more complex convolutional approach convs = [] filter_sizes = [3,4,5] sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) for fsz in filter_sizes: l_conv = Conv1D(nb_filter=128,filter_length=fsz,activation='relu')(embedded_sequences) l_pool = MaxPooling1D(5)(l_conv) convs.append(l_pool) l_merge = Merge(mode='concat', concat_axis=1)(convs) l_cov1= Conv1D(128, 5, activation='relu')(l_merge) l_pool1 = MaxPooling1D(5)(l_cov1) l_cov2 = Conv1D(128, 5, activation='relu')(l_pool1) l_pool2 = MaxPooling1D(30)(l_cov2) l_flat = Flatten()(l_pool2) l_dense = Dense(128, activation='relu')(l_flat) preds = Dense(11, activation='softmax')(l_dense) model = Model(sequence_input, preds) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) print("model fitting - more complex convolutional neural network") model.summary() model.fit(x_train, y_train, validation_data=(x_val, y_val), nb_epoch=2, batch_size=50)